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We analyze the temporal bipartite network of the leading Irish
companies and their directors from 2003 to 2013, encompassing the
end of the Celtic Tiger boom and the ensuing financial crisis in 2008.
We focus on the evolution of company interlocks, whereby a com-
pany director simultaneously sits on two or more boards. We develop
a statistical model for this dataset by embedding the positions of
companies and directors in a latent space. The temporal evolution of
the network is modeled through three levels of Markovian de-
pendence: one on the model parameters, one on the companies’
latent positions, and one on the edges themselves. The model is
estimated using Bayesian inference. Our analysis reveals that the
level of interlocking, as measured by a contraction of the latent space,
increased before and during the crisis, reaching a peak in 2009, and
has generally stabilized since then.
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In the past two decades, Ireland has seen big changes to its
economic prosperity. From the mid-1990s to 2007, there was a

period of rapid economic growth, often referred to as the Celtic
Tiger. However, in 2008, there was a major financial and banking
crisis that had a devastating effect on the economy and was as-
sociated with a series of banking scandals. Since then, there has
been considerable interest in ascertaining the roots of the crisis.
Interlocking directorships have been identified as one possible

factor in the Irish economic crash (1), possibly contributing to
“group think” in the economy and lack of autonomy of individual
companies. This possibility is in line with more general literature,
which suggests that interlocking directorships may be associated
with poorer performance and lower value of companies (2–5),
social embeddedness that limits their effectiveness (6), excessive
remuneration of directors (7, 8) and conflicts of interest, lack of
commitment of directors, and lack of diversity (9, 10).
In this article, we use bipartite networks to investigate inter-

locking directorships in companies listed on the Irish Stock Ex-
change (ISE) between 2003 and 2013 inclusive. Bipartite networks
have two node types such that two nodes can be linked only if they
are of different types. Here, one set of nodes consists of the di-
rectors who fill board positions and the other consists of the
boards themselves, each of which corresponds to a unique com-
pany or organization.
We develop a dynamic statistical model which captures key

features of the evolution of interlocking directorships over time.
Our data cover the period from 2003 to 2013, allowing an in-
vestigation of network behavior in the years before and after the
crisis. A key aspect of the model that we develop is that it allows
for a statistically principled visual representation of the network’s
evolution over time. Clancy et al. (1) examined Irish interlocking
directorates, but over a shorter period from 2005 to 2007, which
did not cover the financial crash, and they did not carry out any
formal statistical modeling.
The modeling task for the type of data we consider has two

primary goals. First, we aim to capture patterns of interaction
between directors and companies within a given year. Second,

we model the temporal evolution of the network and so would
like to capture persistence in the interlocking board behavior
over time.
Latent space models have been developed for static one-mode

networks (11–15). By one-mode, we mean that network contains
one node type, with directed or undirected links between dif-
ferent nodes. Statistical models have also been developed for
dynamic social networks evolving in time (16–19). Among these
models (16) extended the latent space model of ref. 11 to allow
for networks that evolve over time by allowing the latent posi-
tions of the nodes to change according to a random walk.
Several models have been proposed for static bipartite net-

works and cooccurrence data (20). Models for dynamic data of
this type have also been proposed (10, 21, 22).
The latent space model we develop is for dynamic bipartite

networks. The approach most similar to the one we adopt here is
that of Sarkar et al. (23), which is a dynamic adaptation of the
latent space model for cooccurrence data of Globerson et al.
(24). Sarkar et al. (23) examined cooccurrences of words and
authors in text corpora. The model used attaches a latent posi-
tion in a low-dimensional real space to each word and author. It
models the probability of cooccurrence of words and authors
using the empirical distribution of word and author occurrences
and a decreasing function of the distance between their latent
positions. An advantage of this model is that it does not make
any assumption about the distributions of ties directly, allowing
natural modeling of cooccurrence counts through only the em-
pirical distribution of author/word occurrences.
We model evolution over time of the ties between nodes using

a Markov model, extending the model of Sarkar and Moore (16),
who assumed the nodes to be independent given the latent po-
sitions. We found that the conditional independence assumption
misses the persistence in links observed in our director board
membership network, due to directors retaining a board position
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for a number of consecutive years. The model we propose does
account for this persistence.

Methods
Data. A list of all Irish-based companies listed on the ISE from 2003 to 2013
was obtained from the Exchange. The company registration office number
and address of each of the remaining companies was obtained from the
Irish Companies Registration Office website. Hence, for each company, a list
of their directors was found. The data collected were rearranged into a
bipartite dynamic graph, whereby for each year edges between directors
and companies were created according to boards’ compositions. The net-
work was made up of 1,009 directors, 91 companies, and 4,952 edges.
Because the main focus of our analysis is the study of director interlocks,
we removed those companies that did not involve any interlocking links
over the study period, in other words, those companies that did not share
any of their directors with any other board over the 11 years of the study. The
resulting dataset (corresponding to 761 directors, 59 companies, and 3,855
edges) was used to carry out our analysis. Only 22 of the companies were
quoted on the ISE for the entire time period considered, whereas all other
companies either joined at a later stage or left early or both. There was also a

significant number of directors who sat only on one board, sometimes for only
a year. These directors can be seen as peripheral to the Irish network of boards
and directors. Table 1 gives an overview of the number of directors and boards
in each year of the study.

Exploratory Analysis. An interlocked director in any given year is a director
who sits on two or more boards in that same year. It can be seen from Table 1
that the proportion of interlocked directors increased from 2006 to 2010 and
declined from 2011 to 2013.

The number of interlocking links for a node is related to the excess degree,
defined as follows: for a director with degree d, it is equal to d − 1 if d >1 or
0 otherwise. Fig. 1 gives further evidence that the proportion of interlocking
links increased over time until around 2010 and subsequently declined. Fi-
nally Fig. 2 presents a histogram of the out-degree distribution (aggregated
over time) for directors, displaying a heavy right tail indicating that some
directors have many links over the course of the study.

A Dynamic Latent Space Model for Interlocking Boards. The network is de-
scribed by the adjacency cube Y whose elements are defined as

yðtÞij =
�
1, if  director  i   is  a member  of  board  j   at  time  t,
0, otherwise,

for t = 1, . . . , T ,   i= 1, . . . ,N,   j= 1, . . . ,M. To model the dynamic evolution of
the bipartite network one could use a continuous-time framework (10).
However, in the context of Irish interlocking directorates, we observe the
board memberships on the last business day of each year, so each adjacency
matrix represents a one-year aggregate snapshot of the boards and their
directors. We use the term “aggregate” to describe the observed networks,
but in reality, the boards of public limited companies are quite stable and it
would be unusual for a director to serve less than one full term (a year).

Table 1. Number of active companies and directors in each year
and proportion of these that were interlocked directors

Year
No. of

companies
No. of

directors
No. of interlocked

directors Proportion

2003 36 347 23 0.066
2004 36 349 23 0.066
2005 36 335 23 0.069
2006 39 356 23 0.065
2007 43 363 30 0.083
2008 41 351 29 0.083
2009 39 318 33 0.104
2010 37 318 33 0.104
2011 35 296 27 0.091
2012 29 261 17 0.065
2013 29 249 15 0.060

Interlocked directors were those sitting on two or more boards in that year.
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Fig. 1. Evolution of the proportion of interlocking links throughout the
study. The interlocking proportion increased before and during the crisis,
subsequently declining from 2010 to 2013.
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Fig. 2. Histogram of out-degrees of directors aggregated over time in-
dicating that some directors possess many connections throughout the time
period analyzed.

Table 2. Model comparisons

Model DIC
No. of effective

parameters
No. of

parameters

1 7617.57 794.02 2,344
2 10097.35 16.46 26
3 11,372.53 1,640.56 2,331
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Thus, it is more natural to view the observations as equally spaced, and we
make this assumption when formulating our model.

We use a latent space approach to model the positions of companies and
their directors over time. This approach uses the idea that the positions of
companies and their directors lie in a D-dimensional latent Euclidean space,
so that a director which lies close to a company will tend to sit on that company
board. We denote latent director and company positions at time t ∈ f1, . . . ,Tg
by xðtÞ1 , . . . , xðtÞn and wðtÞ

1 , . . . ,wðtÞ
m , respectively. An additional important aspect

of our model is the inclusion of a edge persistence parameter, γðtÞ, which
models the fact that once an edge is formed at time t, it may persist over time.
We similarly include a nonedge persistence parameter, βðtÞ to capture the fact
that a nonedge at time t also typically persists over time. Separating the edge
and nonedge persistences is an important facet of our model, because the
observed temporal bipartite graph is sparse and the effect of persistence of
edges and nonedges is markedly different, as can be seen in Results and Dis-
cussion. Conditional on these latent positions, the log-odds of director i sitting
on board j in year t is

logit 
h
pðtÞ
ij

i
= yðt−1Þij γðtÞ +

h
1− yðt−1Þij

i
βðtÞ −

���xi −wðtÞ
j

���. [1]

In fact, we found for the Irish boards data that modeling changes in di-
rector positions over time gave little extra information but was consid-
erably more computationally demanding; hence, these are kept fixed. The
persistence feature is included through the combination of the intercepts
γðtÞ and βðtÞ depending on whether an edge or a nonedge, respectively, is
observed between nodes i and j at time t. If the state of the edge in the
previous time frame is not known, the quantity yðt−1Þij is substituted by
a hyperparameter δ= 0.0082, equal to the graph density. To summarize,
the likelihood parameters are: the N×M× T observed adjacency cube Y,
an N×D matrix X representing directors’ latent positions, an M×D× T
cube W of boards’ positions and two T-dimensional vectors γ and β for
the intercepts.

We account for the missing data by considering the contribution of boards
only in those years where they are quoted in the ISE. As a matter of fact,
from 2003 to 2013, no boards joined or left the ISE more than once. Hence,
for each board the period of activity is made up of consecutive years only. A
similar reasoning is applied to directors, whereas their contribution to
the likelihood is considered only in the years where they sit on one board
at least. The rationale leading to this simplification is that the likelihood

information used to estimate positions is mainly carried by edges that are
present rather than those that are missing. Hence, we speculate that
neglecting the contribution of inactive boards and directors does not cause
relevant changes in our conclusions.

Therefore, we express the likelihood of the network as

LY = ∏
T

t=1
∏
j∈Bt

∏
i∈Dt

pðtÞ
ij , [2]

where Bt ðDtÞ denotes the set of active boards (directors, respectively) at
time t.

Bayesian Model. We formulate our dynamic latent space model as a Bayesian
hierarchical model. We denote by fðs; μ, νÞ a Gaussian density evaluated at s
and with mean μ and variance ν, and by gðs;u, vÞ a gamma density evaluated
at s with shape u and rate v. We use a random walk model for the boards’
latent positions, specified by

π
�Wjτw , τ0w

�
= ∏

M

j=1
∏
D

d=1
f
�
wð1Þ

jd ; 0,
1
τ0w

�
× ∏

T

t=2
∏
M

j=1
∏
D

d=1
f
�
wðtÞ

jd ;wðt−1Þ
jd ,

1
τw

�
. [3]

The directors’ positions are assumed to arise independently from a D-variate
zero mean Gaussian prior with spherical covariance, hence

πðXÞ= ∏
N

i=1
∏
D

d=1
f
�
xid ; 0,

1
τx

�
. [4]

Note that the parameters corresponding to inactive boards and directors are
included in the prior modeling. The intercept parameters follow a random
walk prior:

π
�
γjτγ , τ0γ

�
= f

�
γð1Þ; 0,

1
τ0γ

�
∏
T

t=2
f
�
γðtÞ; γðt−1Þ,

1
τγ

�
;

π
�
βjτβ, τ0β

�
= f

�
βð1Þ; 0,

1
τ0β

�
∏
T

t=2
f
�
βðtÞ; βðt−1Þ,

1
τβ

�
.

[5]

The precision parameters τw , τ0w , τγ , τ
0
γ , τβ, τ

0
β are all modeled by gamma distri-

butions with common shape a and rate b. (The precision is the reciprocal of the
variance.) The remaining parameters τx ,   a,   b are hyperparameters and hence
user-specified. The hyperparameters were specified as τx = 0.05,   a= 0.5,   b= 1 to
reflect a relatively uninformative prior structure.

Markov Chain Monte Carlo (MCMC) sampling was used to sample from
the joint posterior distribution of all of the model parameters. One issue is
that the likelihood is invariant to rotations, reflections, and translations of
the latent positions, because the likelihood depends on the latent posi-
tions through the distances

���xi −wðtÞ
j

��� for all i, j, t. To account for this
source of model nonidentifiability, we apply Procrustes matching. Details
of the MCMC algorithm and the Procrustes matching are given in the
SI Appendix.

Quantifying the Extent of Interlockingness. Quantifying the extent of inter-
lockingness in a network of companies and directors may be of interest to
policy makers and the public, especially in the aftermath of the economic
crises in Ireland and beyond. A useful byproduct of the output of our sta-
tistical model is that the distribution of latent positions can be used to derive
a metric of interlockingness in each year. In fact, we expect that directors
located near the center of the space will more likely sit on more than one
board, whereas those having a peripheral position will tend to have fewer
connections. Equivalently, the centrality of boards affects the interlocking
level of the network in the same way. For this reason, we assess the var-
iation of interlocking through the empirical variance of boards, which

Table 3. Estimates for gamma

Year Mean SE

2003 8.098 0.929
2004 8.229 0.493
2005 8.145 0.446
2006 8.091 0.451
2007 7.616 0.410
2008 7.937 0.451
2009 7.913 0.461
2010 7.697 0.430
2011 7.225 0.396
2012 7.136 0.434
2013 7.350 0.516

Table 4. Estimates for beta

Year Mean SE

2003 1.32 0.089
2004 −0.491 0.15
2005 −0.712 0.165
2006 −0.481 0.136
2007 −0.754 0.139
2008 −1.14 0.162
2009 −0.761 0.15
2010 −1.148 0.178
2011 −1.154 0.19
2012 −0.381 0.175
2013 −0.637 0.192

Table 5. Estimates for precisions

Parameter Mean SE

τ0w 0.031 0.004
τw 7.209 1.998
τ0γ 0.031 0.033
τγ 2.286 1.292
τ0β 0.532 0.53
τβ 1.602 0.71
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may be computed for each iteration of the MCMC algorithm at each time
t = 1, . . . , T, as

Vt =
1

jBt jD
X
j∈Bt

�
wðtÞ

j −wðtÞ
	′
 
�
wðtÞ

j −wðtÞ
	
, [6]

where wðtÞ =
P

j∈Bt
wðtÞ

j =jBt j and dash refers to matrix transposition.

Model Choice. We also compare our model with two simpler models for the
same data. The three models are as follows:

Model 1: the model described in this section.

Model 2: a special case of Model 1, where the latent distances are all set
to zero. Eq. 1 therefore simplifies to

logit
h
pðtÞ
ij

i
= yðt−1Þij γðtÞ +

h
1− yðt−1Þij

i
βðtÞ. [7]

Model 3: a special case of Model 1, where the persistence feature is
omitted. Therefore, the log-odds of Eq. 1 is expressed as

logit
h
pðtÞ
ij

i
= βðtÞ −

���xi −wðtÞ
j

���. [8]

Model choice is carried out using the deviance information criteria (DIC) (25),
which is estimated from the output of the MCMC algorithm.

Results and Discussion
The DIC values for the three competing models are provided in
Table 2, along with the number of effective parameters and the
actual number of parameters. Our model achieves the lowest
DIC and, therefore, we focus on it for the remainder of the
analysis.
Estimates of the intercept and precision parameters are shown

in Tables 3–5. The precision parameters τ0w,   τ
0
γ and τ0β all have

small values. In particular, the posterior mean of τ0w is compa-
rable with the hyperparameter τx, meaning that the starting po-
sitions are quite far apart. This fact is a sign that the data exhibit
strong heterogeneity, which is captured using the latent space

approach. By contrast, the precision parameters for the innova-
tions τw,   τγ and τβ all have high posterior means, meaning that
the model is relatively stable over time.
Fig. 3 illustrates the fact that the persistence feature in-

troduced in our model plays an important role because the log-
odds for the probability of an edge can be markedly different
when the same edge was present in the previous year. The dif-
ference in the posterior SDs between the two types of the in-
tercept parameters is a consequence of the network being sparse:
more data are available for the estimation of the β values, leading
to better estimates.
The posterior means of the latent positions of both directors

and companies are shown in Fig. 4 by a time-collapsed snapshot.
For the boards, a clustering effect can be noted due to the lit-
tle movement over time, whereas for directors, clusters of
points arise due to boards’ compositions remaining relatively
unchanged over time. The cluster of companies and directors
just below the center of the space corresponds to a higher density
region of the graph that includes most of the leading companies
of the Irish economy, whereas isolated boards typically are
companies with a low market capitalization or a short longevity
in the ISE.
The empirical variance, outlined in Eq. 6, and shown in Fig. 5,

Left clearly exhibits a downward trend from 2003 to 2009, sig-
naling a contraction of the latent space. This result is in agreement
with the increase of interlocking over this period, as presented in
Fig. 1. From 2009 to 2013, the empirical variance index appears to
stabilize, coinciding with an upswing in the economy. The moti-
vation behind the contraction of the latent space can be traced
back to two main causes: the movement of boards toward the
center of the space and the variations induced by boards joining
the ISE after 2003 or leaving before 2013 (recall that the empirical
variance is evaluated using only active boards). The plot in Fig. 5,
Right shows the average distance between the center and board j at
the times of its first and last appearance on the ISE, for every
j= 1,2, . . . ,M. It appears that from 2005 to 2008, several boards
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Fig. 4. Evolution over time of average boards’ positions. The years are
represented through shifting colors: 2003 corresponds to yellow, whereas
2013 corresponds to red. The small blue dots are the posterior means for
directors’ positions.
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Fig. 3. Evolution of the intercept parameters γ,   β. The persistence feature
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located in a peripheral position left the ISE, whereas in the same
years some boards joined the ISE in central positions. Another
relevant fact arising from the same plot is that three boards joined
the ISE in 2013 in central positions, supporting the noticeable
decrease of the empirical variance in that year.
The combination of the evolution of boards’ positions and the

changes in the composition of the ISE basket give a reasonable
justification for the decrease of the empirical variance and hence for
the contraction of the latent space. This finding yields a grounded
theoretical support for the increase of interlockingness argued in
the paper.

Conclusions
We have proposed a latent space model for dynamic bipartite
networks, motivated by Irish corporate board interlocks before
and after the 2008 financial crash. The model can capture het-
erogeneity in the network by means of the latent positions as well

as the persistence of links through a modeling structure for in-
tercept parameters. In our application, we have mainly focused
on the relation between the variation of interlocking level in the
Irish directorates network and the compression/expansion of
the latent space. Our model has captured the dynamic evolu-
tion of this interlockingness, exhibiting a contraction of the
latent space up until 2009 and a stabilization thereafter. This
result may provide some support for the view that there are
disadvantages to interlocking, and that increasing interlocking
may be a warning sign of, and possible contributing factor to
future financial instability.
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